Login / Signup

A Tri-state Fluorescent Switch with "Gated" Solid-state Photochromism Induced by an External Force.

Chen QianZhimin MaJianwei LiuXue ZhangShitao WangZhiyong Ma
Published in: Chemistry, an Asian journal (2021)
Mr. Chen Qian, Dr. Zhimin Ma, Mr. Jianwei Liu, Mrs. Xue Zhang, Prof. Shitao Wang and Prof. Zhiyong Ma. In this article, we report a newly designed molecule composed of a dihydroazulene (DHA) group and a phenothiazine (PTZ) moiety, which achieves aggregation-induced emission enhancement (AIEE), mechanochromism and "gated" solid-state photochromism upon stimulation by an external force. Grinding loosens intermolecular interactions in the crystal and causes a red-shift of fluorescence from 570 nm to 600 nm. Meanwhile, the ring-opening reaction of DHA unit is activated by grinding and a remarkable photochromism could be observed from the grinded powder. The reddish emission of the grinded powder peaked at 600 nm weakened gradually and finally became dark, and a new absorption band at 470 nm emerged in the absorption spectra. Time-dependent density functional theory (TD-DFT) calculation results reveal that the intramolecular intramolecular charge-transfer (ICT) process is replaced by a locally excited (LE) emission on the DHA group, which leads to the quenching of fluorescence. Its impressive photochromic property inspired us to a simple but effective way to develop an encryption system which can let the correct information be displayed upon external stimulation.
Keyphrases