Login / Signup

Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions.

Cheng-Han YuRaquel PradoHernando OmbaoDaniel Rowe
Published in: Biometrics (2022)
We propose a model-based approach that combines Bayesian variable selection tools, a novel spatial kernel convolution structure, and autoregressive processes for detecting a subject's brain activation at the voxel level in complex-valued functional magnetic resonance imaging (CV-fMRI) data. A computationally efficient Markov chain Monte Carlo algorithm for posterior inference is developed by taking advantage of the dimension reduction of the kernel-based structure. The proposed spatiotemporal model leads to more accurate posterior probability activation maps and less false positives than alternative spatial approaches based on Gaussian process models, and other complex-valued models that do not incorporate spatial and/or temporal structure. This is illustrated in the analysis of simulated data and human task-related CV-fMRI data. In addition, we show that complex-valued approaches dominate magnitude-only approaches and that the kernel structure in our proposed model considerably improves sensitivity rates when detecting activation at the voxel level.
Keyphrases