Login / Signup

SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts.

A K M Rezaul Haque ChowdhuryBo TanKrishnan Venkatakrishnan
Published in: ACS applied materials & interfaces (2018)
A noninvasive intracellular component analysis technique is important in cancer treatment and the initial identification of cancer. Carbon nanomaterials/nanostructures, such as carbon nanotubes and graphene, have little to no surface enhanced Raman scattering (SERS) ability. Because of these structures' low Raman responses, they are conjugated with gold or silver to attain the SERS-active ability to detect normal fibroblasts and HeLa cancer cells. To the best of our knowledge, the effectiveness of the individual use of carbon nanomaterials as a nonplasmonic SERS-active platform for in vitro cancer/normal cell detection has not been investigated to date. Here, for the first time, we introduce a unique nonplasmonic SERS-based biosensing platform that uses a biocompatible self-assembled three-dimensional interconnected nanocarbon web (INW) for in vitro detection and differentiation of HeLa cells and fibroblasts. The sub-10-nm morphology of the INW facilitates the endocytic uptake of INW clusters to the cells, and its SERS functionality introduces live cell Raman sensing. The INW platform has achieved an enhancement factor (EF) of 3.66 × 104 and 9.10 × 103 with crystal violet and Rhodamine 6G dyes, respectively, significant in comparison to the EF of graphene surfaces (2-17). The results of the time-based Raman spectroscopy of live HeLa cells and fibroblasts revealed chemical fingerprints of intracellular components, such as DNA/RNA, proteins, and lipids. The components' spectroscopic differences facilitate and elucidate the specification of each cell. The highest Raman enhancement achieved was fourfold for fibroblasts (protein) and sixfold for HeLa cells (DNA). Furthermore, the SERS spectra along with scanning electron microscopy and fluorescence microscopy analysis of the immobilized cells after 24 and 48 h shed light on the health of fibroblasts and HeLa cells. A photon energy-induced ionization achieved with a femtosecond laser fabricated a biocompatible INW platform with the designated unique attributes. This simple, label-free, in vitro diagnosis approach for HeLa cells and fibroblasts has strong potential for cancer research.
Keyphrases