Login / Signup

Glucose Reduces Norovirus Binding to Enterobacter cloacae and Alters Gene Expression of Bacterial Surface Structures in a Growth Phase Dependent Manner.

Kendall J LongChanel A MosbyMelissa K Jones
Published in: Viruses (2022)
Norovirus is the leading cause of acute viral gastroenteritis. Both human and murine noroviruses attach to commensal bacteria belonging to the mammalian gut flora, and binding levels are influenced by nutrients present in bacterial media. However, it is not known which nutrients are responsible for altering viral binding or why binding is altered. Gene expression of commensal bacteria can be changed by the external environment as well as by interaction with pathogens. For example, growth phase and incubation conditions impact expression levels of specific bacterial genes in Escherichia coli . We have previously shown that binding by both human and murine noroviruses to the commensal bacterium Enterobacter cloacae induces genome-wide changes in gene expression with a large number of differentially expressed genes associated with the surface structure of the bacterial cell. The current study evaluated norovirus binding under nutrient-limited conditions and assessed the expression of a select panel of these genes that are significantly altered by norovirus binding under these conditions. The goal of this work was to determine how norovirus attachment to Enterobacter cloacae affected the expression of these genes under varying nutrient and growth phase conditions. We found that the presence of glucose in minimal media reduced murine norovirus binding to E. cloacae and viral binding in the presence of glucose reduced gene expression for surface structures previously associated with norovirus attachment. Changes in viral binding and gene expression occurred in a growth phase-dependent manner. Collectively, these data demonstrate that both the growth phase and nutrient availability alter viral interactions with commensal bacteria and the subsequent changes in gene expression. Ultimately, this work advances our understanding of norovirus-bacterium interactions and provides a foundation for elucidating the conditions and surface structures that regulate norovirus attachment to bacteria.
Keyphrases