Login / Signup

A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation.

Minghui LiAnna JiangHuize HanMeifang ChenBing WangYuxi ChengHua ZhangXueqing WangWenbing DaiWei YangQiang ZhangBing He
Published in: ACS nano (2023)
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Keyphrases