Molecular Profiling of Dental Pulp Stem Cells during Cell Differentiation by Surface Enhanced Raman Spectroscopy.
Jiafeng WangGuohua QiXiaozhang QuXiaoxu LingZhimin ZhangYongdong JinPublished in: Analytical chemistry (2020)
Dental pulp stem cells (DPSCs) are considered one of the key cells in tooth regeneration engineering. Understanding molecular biological information on DPSCs during differentiation is of great significance for the construction of tissue-engineered teeth. In this study, we investigated the differentiation process of DPSCs stimulated by drugs and gained molecular insights in the process. By using label-free and noninvasive surface enhanced Raman spectroscopy (SERS) to monitor molecular change profiling in the cell nucleus of single DPSCs during the differentiation process, we found that two pivotal differentiation biomarkers, alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), were overexpressed during the process. Continuous and intermittent monitoring of SERS spectra from the nuclear region indicated that the expression of proteins and related amino acids of tryptophan were markedly increased until peak period of differentiation (on day 14). Meanwhile corresponding transformation of DNA/RNA backbone vibrational modes was also observed during the differentiation process, indicating the occurrence of replication or transcription of DNA. The method provides a useful tool for the molecular biology studies of DPSCs differentiation, and the finding will broaden our understanding of DPSCs differentiation.