Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro.
Guangxin FengShiyuan DongMin HuangMingyong ZengZunying LiuYuan-Hui ZhaoHaohao WuPublished in: Marine drugs (2018)
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH₂PO₄, 11.76 mM of NaNO₃, and 30.42 mM of Na₂SO₄. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30⁻70 nm and 10⁻30 nm, respectively. 4',6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14⁻18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.
Keyphrases
- hyaluronic acid
- toll like receptor
- signaling pathway
- induced apoptosis
- anti inflammatory
- cell cycle arrest
- nitric oxide
- pi k akt
- nuclear factor
- inflammatory response
- public health
- endoplasmic reticulum stress
- healthcare
- rheumatoid arthritis
- poor prognosis
- lps induced
- immune response
- epithelial mesenchymal transition
- photodynamic therapy
- nitric oxide synthase
- mental health
- small cell lung cancer
- social media
- hydrogen peroxide
- big data
- energy transfer
- deep learning
- risk assessment
- walled carbon nanotubes