Login / Signup

The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review.

Khalida AzudinKok Beng GanRosmina JaafarMohd Hasni Jaafar
Published in: Sensors (Basel, Switzerland) (2023)
Not long ago, hearables paved the way for biosensing, fitness, and healthcare monitoring. Smart earbuds today are not only producing sound but also monitoring vital signs. Reliable determination of cardiovascular and pulmonary system information can explore the use of hearables for physiological monitoring. Recent research shows that photoplethysmography (PPG) signals not only contain details on oxygen saturation level (SPO2) but also carry more physiological information including pulse rate, respiration rate, blood pressure, and arterial-related information. The analysis of the PPG signal from the ear has proven to be reliable and accurate in the research setting. (1) Background: The present integrative review explores the existing literature on an in-ear PPG signal and its application. This review aims to identify the current technology and usage of in-ear PPG and existing evidence on in-ear PPG in physiological monitoring. This review also analyzes in-ear (PPG) measurement configuration and principle, waveform characteristics, processing technology, and feature extraction characteristics. (2) Methods: We performed a comprehensive search to discover relevant in-ear PPG articles published until December 2022. The following electronic databases: Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Scopus, Web of Science, and PubMed were utilized to conduct the studies addressing the evidence of in-ear PPG in physiological monitoring. (3) Results: Fourteen studies were identified but nine studies were finalized. Eight studies were on different principles and configurations of hearable PPG, and eight studies were on processing technology and feature extraction and its evidence in in-ear physiological monitoring. We also highlighted the limitations and challenges of using in-ear PPG in physiological monitoring. (4) Conclusions: The available evidence has revealed the future of in-ear PPG in physiological monitoring. We have also analyzed the potential limitation and challenges that in-ear PPG will face in processing the signal.
Keyphrases
  • blood pressure
  • healthcare
  • machine learning
  • randomized controlled trial
  • public health
  • pulmonary hypertension
  • type diabetes
  • insulin resistance
  • adipose tissue
  • climate change