Login / Signup

A unified theory of free energy functionals and applications to diffusion.

Andrew B LiLeonid MiroshnikBrian D RummelGanesh BalakrishnanSang M HanTalid Sinno
Published in: Proceedings of the National Academy of Sciences of the United States of America (2022)
SignificanceThe free energy functional is a central component of continuum dynamical models used to describe phase transitions, microstructural evolution, and pattern formation. However, despite the success of these models in many areas of physics, chemistry, and biology, the standard free energy frameworks are frequently characterized by physically opaque parameters and incorporate assumptions that are difficult to assess. Here, we introduce a mathematical formalism that provides a unifying umbrella for constructing free energy functionals. We show that Ginzburg-Landau framework is a special case of this umbrella and derive a generalization of the widely employed Cahn-Hilliard equation. More broadly, we expect the framework will also be useful for generalizing higher-order theories, establishing formal connections to microscopic physics, and coarse graining.
Keyphrases
  • meta analyses
  • molecular dynamics
  • molecular dynamics simulations
  • white matter
  • density functional theory
  • systematic review
  • randomized controlled trial
  • multiple sclerosis
  • drug discovery