Login / Signup

Inhibitor-Directed Spin Labelling-A High Precision and Minimally Invasive Technique to Study the Conformation of Proteins in Solution.

Dongsheng M YinDaniel HammlerMartin F PeterAndreas MarxAnton SchmitzGregor Hagelueken
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
Pulsed electron-electron double resonance spectroscopy (known as PELDOR or DEER) has recently become a very popular tool in structural biology. The technique can be used to accurately measure distance distributions within macromolecules or macromolecular complexes, and has become a standard method to validate structural models and to study the conformational flexibility of macromolecules. It can be applied in solution, in lipid environments or even in cells. Because most biological macromolecules are diamagnetic, they are normally invisible for PELDOR spectroscopy. To render a particular target molecule accessible for PELDOR, it can be engineered to contain only one or two surface-exposed cysteine residues, which can be efficiently spin-labelled using thiol-reactive nitroxide compounds. This method has been coined "site-directed spin labelling" (SDSL) and is normally straight-forward. But, SDSL can be very challenging for proteins with many native cysteines, or even a single functionally or structurally important cysteine residue. For such cases, alternative spin labelling techniques are needed. Here we describe the concept of "inhibitor-directed spin labelling" (IDSL) as an approach to spin label suitable cysteine-rich proteins in a site-directed and highly specific manner by employing bespoke spin-labelled inhibitors. Advantages and disadvantages of IDSL are discussed.
Keyphrases