Login / Signup

Augmentation of the Photoreactivation Gene in Fremyella diplosiphon Confers UV-B Tolerance.

Samson M GichukiAnithachristy S ArumanayagamBehnam TabatabaiYavuz S YalcinLaDonna WyattViji Sitther
Published in: ACS omega (2022)
In spite of the enormous potential of cyanobacteria as a renewable energy source, elevated UV exposure is a major impediment to their commercial viability and productivity. Fremyella diplosiphon is a widely explored cyanobacterium with great biofuel capacity due to its high lipid content. To enhance UV stress tolerance in this species, we overexpressed the photoreactivation gene ( phr A ) that encodes for photolyase DNA repair enzyme in the wild type F. diplosiphon (B481-WT) by genetic transformation. Our efforts resulted in a transformant (B481-ViAnSa) with a 3808-fold increase in the phr A mRNA transcript level and enhanced growth under UV-B stress. Additionally, DNA strand breaks in the transformant were significantly lower after 12 and 16 h of UV radiation, with significantly higher dsDNA recovery in B481-ViAnSa (98.1%) compared to that in B481-WT (81.5%) at 48 h post irradiation. Photosystem II recovery time in the transformant was significantly reduced (48 h) compared to that in the wild type (72 h). Evaluation of high-value fatty acid methyl esters (FAMEs) revealed methyl palmitate, the methyl ester of hexadecenoic acid (C16:0), to be the most dominant component, accounting for 53.43% of the identified FAMEs in the transformant. Results of the study offer a promising approach to enhance UV tolerance in cyanobacteria, thus paving the way to large-scale open or closed pond cultivation for commercial biofuel production.
Keyphrases