Free-electron creation at the 60° twin boundary in Bi2Te3.
Kwang-Chon KimJoohwi LeeByung Kyu KimWon Young ChoiHye Jung ChangSung Ok WonBeomjin KwonSeong Keun KimDow-Bin HyunHyun Jae KimHyun Cheol KooJung-Hae ChoiDong-Ik KimJin-Sang KimSeung-Hyub BaekPublished in: Nature communications (2016)
Interfaces, such as grain boundaries in a solid material, are excellent regions to explore novel properties that emerge as the result of local symmetry-breaking. For instance, at the interface of a layered-chalcogenide material, the potential reconfiguration of the atoms at the boundaries can lead to a significant modification of the electronic properties because of their complex atomic bonding structure. Here, we report the experimental observation of an electron source at 60° twin boundaries in Bi2Te3, a representative layered-chalcogenide material. First-principles calculations reveal that the modification of the interatomic distance at the 60° twin boundary to accommodate structural misfits can alter the electronic structure of Bi2Te3. The change in the electronic structure generates occupied states within the original bandgap in a favourable condition to create carriers and enlarges the density-of-states near the conduction band minimum. The present work provides insight into the various transport behaviours of thermoelectrics and topological insulators.