Login / Signup

scGHOST: identifying single-cell 3D genome subcompartments.

Kyle XiongRuochi ZhangJian Ma
Published in: Nature methods (2024)
Single-cell Hi-C (scHi-C) technologies allow for probing of genome-wide cell-to-cell variability in three-dimensional (3D) genome organization from individual cells. Computational methods have been developed to reveal single-cell 3D genome features based on scHi-C, including A/B compartments, topologically associating domains and chromatin loops. However, no method exists for annotating single-cell subcompartments, which is important for understanding chromosome spatial localization in single cells. Here we present scGHOST, a single-cell subcompartment annotation method using graph embedding with constrained random walk sampling. Applications of scGHOST to scHi-C data and contact maps derived from single-cell 3D genome imaging demonstrate reliable identification of single-cell subcompartments, offering insights into cell-to-cell variability of nuclear subcompartments. Using scHi-C data from complex tissues, scGHOST identifies cell-type-specific or allele-specific subcompartments linked to gene transcription across various cell types and developmental stages, suggesting functional implications of single-cell subcompartments. scGHOST is an effective method for annotating single-cell 3D genome subcompartments in a broad range of biological contexts.
Keyphrases
  • single cell
  • rna seq
  • genome wide
  • high throughput
  • dna methylation
  • gene expression
  • stem cells
  • mass spectrometry
  • cell therapy
  • artificial intelligence
  • bone marrow
  • convolutional neural network