Login / Signup

Multifunctional Photothermal Conversion Nanocoatings Toward Highly Efficient and Safe High-Viscosity Oil Cleanup Absorption.

Hai-Gang ShiShu-Liang LiJin-Bo ChengHai-Bo ZhaoYu-Zhong Wang
Published in: ACS applied materials & interfaces (2021)
Efficient and safe cleanup for the high-viscosity heavy oil spill has been a worldwide challenge due to its sluggish flowability, while classic absorption methods by electric/solar heating are seriously limited by low efficiency and high fire hazards during heating of highly flammable oil. Facing this dilemma, we reported a novel flame-retardant photothermal conversion nanocoating to endow commercial foams with highly efficient and safe heavy oil cleanup absorption. This multifunctional nanocoating consisting of nano-Fe3O4 and reduced graphene oxide (rGO) that both showed photothermal conversion ability and non-flammable nature can be firmly deposited on the polymer foam skeletons via facile coprecipitation and dip-coating processes. The composite foam showed a tough morphology with high hydrophobicity and low density, thus leading to selective high absorption for various oils and organic solvents. Due to the double photothermal conversion effects of nano-Fe3O4 and rGO, the temperature of the foam can be rapidly heated at a rate of ∼103.5 °C/min (the fastest rate ever) under 1 sun irradiation. Consequently, the foam with a high absorption capacity of 75.1 times its weight demonstrated a rapid absorption rate of 9000 g m-2 min-1 for large-viscosity oil under 1 sun irradiation, which was 3 times faster than previously reported. Furthermore, benefitting from high flame retardancy, elasticity, and magnetism, the foam can be safely and repeatedly used for magnetically controllable oil cleanup absorption, which effectively avoids oil spill hazards.
Keyphrases