Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men.
Joshua C TremblayPhilip N AinslieRachel E F TurnerHannes GattererMaja SchlittlerSimon WoykeIvo B RegliGiacomo StrapazzonSimon RauchChristoph SiebenmannPublished in: American journal of physiology. Heart and circulatory physiology (2020)
High-altitude exposure typically reduces endothelial function, and this is modulated by hemoconcentration resulting from plasma volume contraction. However, the specific impact of hypobaric hypoxia independent of external factors (e.g., cold, varying altitudes, exercise, diet, and dehydration) on endothelial function is unknown. We examined the temporal changes in blood viscosity, shear stress, and endothelial function and the impact of plasma volume expansion (PVX) during exposure to hypobaric hypoxia while controlling for external factors. Eleven healthy men (25 ± 4 yr, mean ± SD) completed two 4-day chamber visits [normoxia (NX) and hypobaric hypoxia (HH; equivalent altitude, 3,500 m)] in a crossover design. Endothelial function was assessed via flow-mediated dilation in response to transient (reactive hyperemia; RH-FMD) and sustained (progressive handgrip exercise; SS-FMD) increases in shear stress before entering and after 1, 6, 12, 48, and 96 h in the chamber. During HH, endothelial function was also measured on the last day after PVX to preexposure levels (1,140 ± 320 mL balanced crystalloid solution). Blood viscosity and arterial shear stress increased on the first day during HH compared with NX and remained elevated at 48 and 96 h (P < 0.005). RH-FMD did not differ during HH compared with NX and was unaffected by PVX despite reductions in blood viscosity (P < 0.05). The stimulus-response slope of increases in shear stress to vasodilation during SS-FMD was preserved in HH and increased by 44 ± 73% following PVX (P = 0.023). These findings suggest that endothelial function is maintained in HH when other stressors are absent and that PVX improves endothelial function in a shear-stress stimulus-specific manner.NEW & NOTEWORTHY Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.