Surface-Enhanced Raman Spectroscopy Combined with Multivariate Analysis for Fingerprinting Clinically Similar Fibromyalgia and Long COVID Syndromes.
Shreya Madhav NuguriKevin V HackshawSilvia de Lamo CastellviYalan WuCeleste Matos GonzalezChelsea M GoetzmanZachary D SchultzLianbo YuRija AzizMichelle M Osuna-DiazKatherine R SebastianW Michael BrodeMaria Monica GiustiLuis Rodriguez-SaonaPublished in: Biomedicines (2024)
Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10-20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.
Keyphrases
- raman spectroscopy
- gold nanoparticles
- simultaneous determination
- coronavirus disease
- sars cov
- mass spectrometry
- liquid chromatography
- chronic pain
- machine learning
- sensitive detection
- optical coherence tomography
- pain management
- magnetic resonance imaging
- oxidative stress
- low grade
- neuropathic pain
- high resolution
- tandem mass spectrometry
- ionic liquid
- ms ms
- data analysis
- case report
- quantum dots
- spinal cord
- sleep quality
- high resolution mass spectrometry
- spinal cord injury
- big data
- heat shock protein
- respiratory syndrome coronavirus
- virtual reality
- structural basis