Probing the epigenetic signatures in subjects with coronary artery disease.
Bobbala IndumathiSai Satish OrugantiShaik Mohammad NaushadVijay Kumar KutalaPublished in: Molecular biology reports (2020)
Depletion of S-adenosyl methionine and 5-methyltetrahydrofolate; and elevation of total plasma homocysteine were documented in CAD patients, which might modulate the gene-specific methylation status and alter their expression. In this study, we have aimed to delineate CAD-specific epigenetic signatures by investigating the methylation and expression of 11 candidate genes i.e. ABCG1, LIPC, PLTP, IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66 and TGFBR3. The methylation-specific PCR and qRT-PCR were used to assess the methylation status and the expression of candidate genes, respectively. CAD patients showed the upregulation of IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66, and TGFBR3. Hypomethylation of CDKN2A loci was shown to increase risk for CAD by 1.79-folds (95% CI 1.22-2.63). Classification and regression tree (CART) model of gene expression showed increased risk for CAD with F2RL3 > 3.4-fold, while demonstrating risk reduction with F2RL3 < 3.4-fold and IL-6 < 7.7-folds. This CAD prediction model showed the excellent sensitivity (0.98, 95% CI 0.88-1.00), specificity (0.91, 95% CI 0.86-0.92), positive predictive value (0.82, 95% CI 0.75-0.84), and negative predictive value (0.99, 95% CI 0.94-1.00) with an overall accuracy of 92.8% (95% CI 87.0-94.1%). Folate and B12 deficiencies were observed in CAD cases, which were shown to contribute to hypomethylation and upregulation of the prime candidate genes i.e. CDKN2A and F2RL3. Early onset diabetes was associated with IL-6 and TNF-α hypomethylation and upregulation of CDKN2A. The expression of F2RL3 and IL-6 (or) hypomethylation status at CDKN2A locus are potential biomarkers in CAD risk prediction. Early epigenetic imprints of CAD were observed in early onset diabetes. Folate and B12 deficiencies are the contributing factors to these changes in CAD-specific epigenetic signatures.
Keyphrases
- coronary artery disease
- early onset
- dna methylation
- poor prognosis
- genome wide
- gene expression
- percutaneous coronary intervention
- coronary artery bypass grafting
- cardiovascular events
- late onset
- end stage renal disease
- type diabetes
- rheumatoid arthritis
- ejection fraction
- cardiovascular disease
- cell proliferation
- prognostic factors
- signaling pathway
- copy number
- machine learning
- heart failure
- metabolic syndrome
- left ventricular
- peritoneal dialysis
- deep learning
- aortic stenosis
- atrial fibrillation
- acute coronary syndrome
- amino acid
- cancer stem cells