Login / Signup

New engineered Geobacillus lipase GD-95RM for industry focusing on the cleaner production of fatty esters and household washing product formulations.

Gytis DruteikaMikas SadauskasVilius MalunaviciusEgle LastauskieneRoberta StatkeviciuteAgne SavickaiteRenata Gudiukaite
Published in: World journal of microbiology & biotechnology (2020)
This study presents a new microbial lipolytic enzyme GD-95RM designed via random mutagenesis using previously characterized GD-95 lipase as a template. The improvement in activity of GD-95 lipase was caused by E100K, F154V and V174I mutations. Compared with GD-95 lipase, the GD-95RM lipase had 1.3-fold increased specific activity (2000 U/mg), demonstrated resistance to higher temperatures (75-85 °C), had fourfold increased Vmax towards p-NP dodecanoate and showed 2.5-fold lower KM for p-NP butyrate. It retained > 50% of its lipolytic activity when hydrolyzing short, medium and long acyl chain substrates at 30 °C and 55 °C reaction temperatures after 20 days' incubation with 25% of ethanol. GD-95RM also displayed long-term tolerance (40 d) to 5% NaCl, trisodium citrate, sodium perborate, urea, 0.1% boric acid, citric acid and Triton X-100. Moreover, oil hydrolysis and transesterification results revealed the capability of GD-95RM lipase to produce fatty acids or fatty acid esters through eco-friendly hydrolysis and transesterification reactions using a broad range of vegetable and fish oils, animal fat and different alcohols as substrates. GD-95RM lipase was successfully applied in synthesis reactions for ethyl oleate, octyl oleate and isoamyl oleate without giving to use additional reaction compounds or special reaction conditions.
Keyphrases
  • fatty acid
  • adipose tissue
  • mass spectrometry
  • high resolution
  • ionic liquid
  • liquid chromatography