Lactic acid bacteria (LAB) as probiotic candidates have various beneficial functions, such as regulating gut microbiota, inhibiting intestinal pathogens, and improving gut immunity. The colonization of the intestine is a prerequisite for probiotic function. Therefore, it is necessary to screen the highly adherent LAB. In this study, the cell surface properties, such as hydrophobicity, auto-aggregation, co-aggregation, and adhesion abilities of the six chicken-derived LAB to Caco-2 cells were investigated. All six strains showed different hydrophobicity (21.18-95.27%), auto-aggregation (13.61-30.17%), co-aggregation with Escherichia coli ATCC 25922 (10.23-36.23%), and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311 (11.71-39.35%), and adhesion to Caco-2 cells (8.57-26.37%). Pediococcus pentosaceus 2-5 and Lactobacillus reuteri L-3 were identified as the strains with strong adhesion abilities (26.37% and 21.57%, respectively). Moreover, these strains could survive in a gastric acid environment at pH 2, 3, and 4 for 3 h and in a bile salt environment at 0.1%, 0.2%, and 0.3% ( w / v ) concentration for 6 h. Furthermore, the cell-free supernatant of P. pentosaceus 2-5 and L. reuteri L-3 inhibited the growth of enteropathogenic bacteria and the strains inhibited the adhesion of these pathogens to Caco-2 cells. In this study, these results suggested that P. pentosaceus 2-5 and L. reuteri L-3, isolated from chicken intestines might be good probiotic candidates to be used as feed additives or delivery vehicles of biologically active substances.