Gramicidin A (gA) is a short hydrophobic β-helical peptide that forms cation-selective channels in lipid membranes in the course of transbilayer dimerization. The length of the gA helix is smaller than the thickness of a typical lipid monolayer. Consequently, elastic deformations of the membrane arise in the configurations of gA monomers, conducting dimer, and the intermediate state of coaxial pair, where gA monomers from opposing membrane monolayers are located one on top of the other. The gA channel is characterized by the average lifetime of the conducting state. The elastic properties of the membrane influence the average lifetime, thus making gA a convenient sensor of membrane elasticity. However, the utilization of gA to investigate the elastic properties of mixed membranes comprising two or more components frequently relies on the assumption of ideality, namely that the elastic parameters of mixed-lipid bilayers depend linearly on the concentrations of the components. Here, we developed a general approach that does not rely on the aforementioned assumption. Instead, we explicitly accounted for the possibility of inhomogeneous lateral distribution of all lipid components, as well as for membrane-mediated lateral interactions of gA monomers, dimer, coaxial pair, and minor lipid components. This approach enabled us to derive unknown elastic parameters of lipid monolayer from experimentally determined lifetimes of gA channel in mixed-lipid bilayers. A general algorithm was formulated that allows the unknown elastic parameters of a lipid monolayer to be obtained using gA as a mechanical sensor.