Login / Signup

Eosin-Y/Cu(OAc) 2 -catalyzed aerobic oxidative coupling reactions of glycine esters in the dark.

Raghunath Chowdhury
Published in: Organic & biomolecular chemistry (2022)
Catalytic aerobic oxidative coupling reactions of glycine esters with β-keto acids, indoles, naphthols, and pyrrole have been realized at ambient temperature via the manipulation of the ground state reactivity of eosin-Y in the presence of Cu(OAc) 2 in the dark. This method delivers structurally diverse unnatural amino acid derivatives under mild reaction conditions. UV-vis absorption spectroscopy, cyclic voltammetry, X-ray photoelectron spectroscopy, high-resolution mass spectrometry, and control experiments were performed to formulate a plausible mechanistic pathway. The step economy, broad substrate scope, use of air as a green oxidant, and operationally simple set-up make this protocol highly appealing for both academic and industrial applications.
Keyphrases