Login / Signup

Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19.

Samuel DruzakElizabeth IffrigBlaine R RobertsTiantian ZhangKirby S FibbenYumiko SakuraiHans P VerkerkeChristina A RostadAnn ChahroudiFrank SchneiderAndrew Kam Ho WongAnne M RobertsJoshua D ChandlerSusan O KimMario MosunjacMarina MosunjacRachel GellerIgor AlbizuaSean R StowellConnie M ArthurLarry J AndersonAnna A IvanovaJun AhnXueyun LiuKristal Maner-SmithThomas BowenMirko PaiardiniSteven E BosingerJohn D RobackDeanna A KulpaGuido SilvestriWilbur A LamEric A OrtlundCheryl L Maier
Published in: Nature communications (2023)
The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.
Keyphrases