Login / Signup

Lanthanide phosphate (LnPO4 ) rods as bio-probes: A systematic investigation on structural, optical, magnetic, and biological characteristics.

Rugmani MeenambalPavan PoojarSairam GeethanathT S AnithaSanjeevi Kannan
Published in: Journal of biomedical materials research. Part B, Applied biomaterials (2018)
The proposed work involves an exclusive study on the synthesis protocol, crystal structure analysis, and imaging contrast features of unique lanthanide phosphates (LnPO4 ). XRD and Raman spectra affirmed the ability of the proposed synthesis technique to achieve unique LnPO4 devoid of impurities. The crystal structure analysis confirms the P121/c1 space setting of NdPO4 , EuPO4 , GdPO4 , and TbPO4 that all uniformly crystallizes in monoclinic unit cell. In a similar manner, the tetragonal crystal setting of DyPO4 , ErPO4 , HoPO4 , and YbPO4 that unvaryingly possess the I41/amd space setting is confirmed. Under the same synthesis conditions, the monoclinic (Eu) and tetragonal (Ho) lanthanide phosphates displayed uniform rod-like morphologies. Absorption and luminescence properties of unique LnPO4 were determined. In vitro biological studies demonstrated low toxicity levels of LnPO4 and clearly distinguished fluorescence of TbPO4 and EuPO4 in Y79, retinoblastoma cell lines. The paramagnetic response of GdPO4 , NdPO4 , DyPO4 , TbPO4 , and HoPO4 facilitated excellent magnetic resonance imaging (MRI) contrast features. Meanwhile, GdPO4 , DyPO4 , HoPO4 , and YbPO4 possessing higher X-ray absorption coefficient than clinical contrast Omnipaque™ exhibited high computed tomography (CT) efficiency. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1372-1383, 2019.
Keyphrases