Nickel Catalyzed Enantioselective 1,4-Hydroamination of 1,3-Dienes.
Chengdong WangXingheng WangZheng WangXiaoming WangKui-Ling DingPublished in: Journal of the American Chemical Society (2024)
Transition metal-catalyzed enantioselective hydroamination of 1,3-dienes provides a direct methodology for the construction of chiral allylamines. So far, all of the reported examples used nucleophilic amines and proceeded with 3,4-regioselectivity. Herein, we describe the first example of nickel-catalyzed enantioselective 1,4-hydroamination of 1,3-dienes using trimethoxysilane and hydroxylamines with a structurally adaptable aromatic spiroketal based chiral diphosphine (SKP) as the ligand, affording a wide array of α-substituted chiral allylamines in high yields with excellent regio- and enantioselectivities. This operationally simple protocol demonstrated a broad substrate scope and excellent functional group compatibility, significantly expanding the chemical space for chiral allylamines. Experimental and DFT studies were performed to elucidate the mechanism and to rationalize the regio- and enantioselectivities of the reaction.