Login / Signup

Virtual Position Guided Strategy for Particle Swarm Optimization Algorithms on Multimodal Problems.

Chao LiJun SunLi-Wei LiMin ShanVasile PaladeXiaojun Wu
Published in: Evolutionary computation (2024)
Premature convergence is a thorny problem for particle swarm optimization (PSO) algorithms, especially on multimodal problems, where maintaining swarm diversity is crucial. However, most enhancement strategies for PSO, including the existing diversity-guided strategies, have not fully addressed this issue. This paper proposes the virtual position guided (VPG) strategy for PSO algorithms. The VPG strategy calculates diversity values for two different populations and establishes a diversity baseline. It then dynamically guides the algorithm to conduct different search behaviors, through three phases - divergence, normal, and acceleration - in each iteration, based on the relationships among these diversity values and the baseline. Collectively, these phases orchestrate different schemes to balance exploration and exploitation, collaboratively steering the algorithm away from local optima and towards enhanced solution quality. The introduction of 'virtual position' caters to the strategy's adaptability across various PSO algorithms, ensuring the generality and effectiveness of the proposed VPG strategy. With a single hyperparameter and a recommended usual setup, VPG is easy to implement. The experimental results demonstrate that the VPG strategy is superior to several canonical and the state-of-the-art strategies for diversity guidance, and is effective in improving the search performance of most PSO algorithms on multimodal problems of various dimensionalities.
Keyphrases
  • machine learning
  • deep learning
  • mental health
  • randomized controlled trial
  • pain management
  • systematic review