METTL3-mediated upregulation of FAM135B promotes EMT of esophageal squamous cell carcinoma via regulating the Wnt/β-catenin pathway.
Tong-Tong ZhangWei YiDe-Zuo DongZheng-Yun RenYu ZhangFeng DuPublished in: American journal of physiology. Cell physiology (2024)
Family with sequence similarity 135 member B (FAM135B) is a novel driver gene in esophageal squamous cell carcinoma (ESCC). However, little is known regarding its biological functions and mechanisms in ESCC. Here, we identified that the high expression of FAM135B was associated with lymph node metastasis and infiltrating development of ESCC. Elevated FAM135B expression promoted ESCC migration and invasion in vitro and lung metastasis in vivo. Furthermore, epithelial-mesenchymal transition (EMT)-related pathways were enriched in ESCC samples with high levels of FAM135B and FAM135B positively regulated EMT markers. Mechanistically, we observed that FAM135B interacted with the intermediate domain of TRAF2 and NCK-interacting kinase (TNIK), activating the Wnt/β-catenin signaling pathway. The facilitation of TNIK on ESCC migration and invasion was reversed by FAM135B siRNA. In addition, the N6-methyladenosine (m6A) modification positively regulated FAM135B expression, with methyltransferase like 3 (METTL3) acting as its substantial m6A writer. The pro-EMT effects of METTL3 overexpression were reversed by silencing FAM135B. Collectively, these findings illustrate the critical role of ABCDE in ESCC progression and provide new insights into the upstream and downstream mechanisms of FAM135B. NEW & NOTEWORTHY This study reveals for the first time that the novel cancer-related gene, FAM135B, promotes ESCC metastasis both in vitro and in vivo. Besides, we substantiate FAM135B's action on the β-catenin pathway through interacting with TNIK, thereby elucidating the promotional effect of FAM135B on ESCC EMT. Furthermore, we provide initial evidence demonstrating that METTL3-mediated m6A modification upregulates the expression of FAM135B in ESCC cells.