Effects of Replacing Inorganic with Organic Iron on Performance, Egg Quality, Serum and Egg Yolk Lipids, Antioxidant Status, and Iron Accumulation in Eggs of Laying Hens.
Sima SarlakSayed Ali TabeidianMajid ToghyaniAmir Davar Foroozandeh ShahrakiMohammad GoliMahmood HabibianPublished in: Biological trace element research (2020)
This study compared the effects dietary organic (ferrous glycine [FG]) versus inorganic (ferrous sulfate [FS]) iron in laying hens on performance, egg quality, serum and egg yolk lipids, antioxidant status, and iron enrichment of eggs. A total of 378 Shaver White layers were allotted to 7 treatments with 6 replicates (9 birds each) from 30 to 42 weeks of age. A basal diet (19 mg iron/kg) served as control, while the other six diets were supplemented with either FS or FG to provide 30, 60, and 120 mg/kg of added iron. Dietary FG and FS treatments improved (P < 0.05) laying rate, egg weight, and egg quality of layers, relative to the control, albeit eggshell strength and eggshell calcium also deteriorated with the highest level of FS (P < 0.05). The iron treatment groups exhibited a lower serum and egg yolk levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol that accompanied by higher levels of high-density lipoprotein cholesterol and greater activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) as compared with the control (P < 0.05). The contents of malondialdehyde and protein carbonyl were conversely related to the activities SOD and GPx (P < 0.05). The serum and egg fractions (yolk, albumen, and shell) displayed gradually increases in iron contents as the level of iron increased in the diet (P < 0.05), while FG was superior to FS at all tested levels (P < 0.05). To summary, FS can be replaced by FG, with more favorable impacts on egg quality and iron enrichment.