Role of Grounded Liquid Collectors in Precise Patterning of Electrospun Nanofiber Mats.
Sang Min ParkSeongsu EomWonkyoung KimDong Sung KimPublished in: Langmuir : the ACS journal of surfaces and colloids (2017)
Liquid collectors are applicable as ground collectors in electrospinning, which fabricates complex nanofiber architectures. However, the influence of the electrical properties of liquid collectors on the controlled deposition of electrospun nanofiber mats has received little attention. Here, we prepare two types of liquid collectors (electrolyte solutions and dielectric liquids) and newly scrutinize their roles in the patterning of electrospun nanofiber mats in experiments and in numerical simulations. By simulating the concentrations of the electric fields around the liquid collectors, we indirectly evaluated the patternability of the collectors. The patternability trends were verified by the patterning of nanofiber mats on line-array-shaped liquid collectors fabricated by electrospinning. The deposition accuracy of the electrolyte solution collector was very high, equivalent to that of a conventional metal collector even at low salt concentrations (e.g., 0.01 M KCl). However, the nanofiber mats fabricated by electrospinning with the dielectric liquid collector showed retarded patternability.