Identification of Molecular Profile of Cell Membrane via Magnetic Plasmonic Nanoprobe.
Jiaqi WangXin WangFanxiang MengLili CongWei ShiWeiqing XuBing HanShu-Ping XuPublished in: Analytical chemistry (2024)
Cell membranes are primarily composed of lipids, membrane proteins, and carbohydrates, and the related studies of membrane components and structures at different stages of disease development, especially membrane proteins, are of great significance. Here, we investigate the chemical signature profiles of cell membranes as biomarkers for cancer cells via label-free surface-enhanced Raman scattering (SERS). A magnetic plasmonic nanoprobe was proposed by decorating magnetic beads with silver nanoparticles, allowing self-driven cell membrane-targeted accumulation within 5 min. SERS profiles of three types of breast cells were achieved under the plasmon enhancement effect of these nanoprobes. Membrane fingerprint spectra from breast cell lines were further classified with the convolutional neural network model, which perfectly distinguished between two breast cancer subtypes. We further tested various clinical samples using this method and obtained fingerprint spectra from primary cells and frozen slices. This study presents a practical, user-friendly approach for label-free and in situ analysis of cell membranes, which can work for early tumor screening and treatment assessment for tumors reliant on the Molecular profiles of cell membranes. Additionally, this method can be applied universally to explore cell membrane components of other cells, thus assisting Human Cell Atlas.