Highly efficient photonic radar by incorporating MDM-WDM and machine learning classifiers under adverse weather conditions.
Sushank ChaudharyAbhishek SharmaKuldeep SinghSunita KhicharJyoteesh MalhotraPublished in: PloS one (2024)
Photonic radar, a cornerstone in the innovative applications of microwave photonics, emerges as a pivotal technology for future Intelligent Transportation Systems (ITS). Offering enhanced accuracy and reliability, it stands at the forefront of target detection and recognition across varying weather conditions. Recent advancements have concentrated on augmenting radar performance through high-speed, wide-band signal processing-a direct benefit of modern photonics' attributes such as EMI immunity, minimal transmission loss, and wide bandwidth. Our work introduces a cutting-edge photonic radar system that employs Frequency Modulated Continuous Wave (FMCW) signals, synergized with Mode Division and Wavelength Division Multiplexing (MDM-WDM). This fusion not only enhances target detection and recognition capabilities across diverse weather scenarios, including various intensities of fog and solar scintillations, but also demonstrates substantial resilience against solar noise. Furthermore, we have integrated machine learning techniques, including Decision Tree, Extremely Randomized Trees (ERT), and Random Forest classifiers, to substantially enhance target recognition accuracy. The results are telling: an accuracy of 91.51%, high sensitivity (91.47%), specificity (97.17%), and an F1 Score of 91.46%. These metrics underscore the efficacy of our approach in refining ITS radar systems, illustrating how advancements in microwave photonics can revolutionize traditional methodologies and systems.