Bone matrix properties in adults with osteogenesis imperfecta are not adversely affected by Setrusumab - a sclerostin neutralizing antibody.
Maximilian RummlerVictoria SchemenzSamantha McCluskeyAnton DavydokFrank RauchFrancis H GlorieuxMatthew J HarringtonWolfgang WagermaierBettina M WillieElizabeth A ZimmermannPublished in: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2024)
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by low bone mass and frequent fractures. Children with OI are commonly treated with bisphosphonates to reduce fracture rate, but treatment options for adults are limited. In the Phase 2b ASTEROID trial, setrusumab (a sclerostin neutralizing antibody, SclAb) improved bone density and strength in adults with type I, III and IV OI. Here, we investigate bone matrix material properties in tetracycline-labeled trans-iliac biopsies from three groups: i) control: individuals with no metabolic bone disease, ii) OI: individuals with OI, iii) SclAb-OI: individuals with OI after six months of setrusumab treatment (as part of the ASTEROID trial). In addition to bone histomorphometry, bone mineral and matrix properties were evaluated with nanoindentation, Raman spectroscopy, second harmonic generation imaging, quantitative backscatter electron imaging, and small-angle x-ray scattering. Spatial locations of fluorochrome labels were identified to differentiate inter-label bone of the same tissue age and intra-cortical bone. No difference in collagen orientation was found between the groups. The bone mineral density distribution and analysis of Raman spectra indicate that OI groups have greater mean mineralization, greater relative mineral content, and lower crystallinity than the control group, which was not altered by SclAb treatment. Finally, a lower modulus and hardness were measured in the inter-label bone of the OI-SclAb group compared to the OI group. Previous studies suggest that even though bone from OI has a higher mineral content, the ECM has comparable mechanical properties. Therefore, fragility in OI may stem from contributions from other yet unexplored aspects of bone organization at higher length scales. We conclude that SclAb treatment leads to increased bone mass while not adversely affecting bone matrix properties in individuals with OI.