Login / Signup

Selection from a pool of self-assembling lipid replicators.

Ignacio ColomerArseni BorissovStephen P Fletcher
Published in: Nature communications (2020)
Replication and compartmentalization are fundamental to living systems and may have played important roles in life's origins. Selection in compartmentalized autocatalytic systems might provide a way for evolution to occur and for life to arise from non-living systems. Herein we report selection in a system of self-reproducing lipids where a predominant species can emerge from a pool of competitors. The lipid replicators are metastable and their out-of-equilibrium population can be sustained by feeding the system with starting materials. Phase separation is crucial for selective surfactant formation as well as autocatalytic kinetics; indeed, no selection is observed when all reacting species are dissolved in the same phase. Selectivity is attributed to a kinetically controlled process where the rate of monomer formation determines which replicator building blocks are the fittest. This work reveals how kinetics of a phase-separated autocatalytic reaction may be used to control the population of out-of-equilibrium replicators in time.
Keyphrases
  • molecular dynamics
  • fatty acid
  • molecular dynamics simulations
  • aqueous solution
  • high resolution