Login / Signup

Incorporation of Three Extracyclic Arginine Residues into a Melanocortin Macrocyclic Agonist (c[Pro-His-DPhe-Arg-Trp-Dap-Lys(Arg-Arg-Arg-Ac)-DPro]) Decreases Food Intake When Administered Intrathecally or Subcutaneously Compared to a Macrocyclic Ligand Lacking Extracyclic Arginine Residues (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro)].

Mark D EricsonKatie T FreemanCourtney M LarsonJacob L BouchardKristen JohnMary M LunzerZoe M KoeperichCarrie Haskell-Luevano
Published in: ACS pharmacology & translational science (2024)
Of the three Food and Drug Administration-approved melanocortin peptide drugs, two possess a cyclic scaffold, demonstrating that cyclized melanocortin peptides have therapeutic relevance. An extracyclic Arg residue, critical for pharmacological activity in the approved melanocortin cyclic drug setmelanotide, has also been demonstrated to increase the signal when fluorescently labeled cell-penetrating cyclic peptides are incubated with HeLa cells, with the maximal signal observed with three extracyclic Arg amino acids. Herein, a branching Lys residue was substituted into two macrocyclic melanocortin peptide agonists to incorporate 0-3 extracyclic Arg amino acids. Incorporation of the Arg residues resulted in equipotent or increased agonist potency at the mouse melanocortin receptors in vitro , suggesting that these substitutions were tolerated in the macrocyclic scaffolds. Further in vivo evaluation of one parent ligand (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-Pro]) and the three Arg derivative (c[Pro-His-DPhe-Arg-Trp-Dap-Lys(Ac-Arg-Arg-Arg)-Pro)] demonstrated that the three Arg derivative further decreased food intake compared to the parent macrocycle when the compounds were administered either via intrathecal injection or subcutaneous dosing. This suggests that three extracyclic Arg amino acids may be beneficial in the design of cyclic melanocortin ligands and that in vitro pharmacological profiling may not predict the in vivo efficacy of melanocortin ligands.
Keyphrases
  • amino acid
  • nitric oxide
  • anti inflammatory
  • emergency department
  • drug administration
  • stem cells
  • blood pressure
  • oxidative stress
  • single cell
  • climate change
  • bone marrow
  • body composition
  • heart rate
  • drug induced