Corrected Structure of Natural Hyacinthacine C1 via Total Synthesis.
Anthony W CarrollAnthony C WillisMasako HoshinoAtsushi KatoStephen G PynePublished in: Journal of natural products (2019)
Hyacinthacines C1 and C4 are natural products that were isolated from Hyacinthoides non-scripta and Scilla socialis in 1999 and 2007, respectively. Despite their different 1H NMR and 13C NMR spectroscopic data, these compounds have been assigned the same structures, including absolute configurations. This work details the total synthesis of natural (+)-hyacinthacine C1, whose structure is confirmed as being the C-6 epimer of that reported. The synthetic strategy focused on inverting the configuration at C-1 of the final hyacinthacines via operating the inversion at the corresponding carbon atom in three previously synthesized intermediates. To do this, the advanced intermediates were subjected to Swern oxidation, followed by a stereoselective reduction with L-Selectride. This approach led to the synthesis of (+)-5 -epi-hyacinthacine C1 (15), the corrected structure for (+)-hyacinthacine C1 (19), (+)-6,7-di- epi-hyacinthacine C1 (23), and (+)-7- epi-hyacinthacine C1 (29). Glycosidase inhibition assays revealed that (+)-hyacinthacine C1 (19) proved the most active, with IC50 values of 33.7, 55.5, and 78.2 μM, against the α-glucosidase of rice, human lysosome, and rat intestinal maltase, respectively.
Keyphrases
- high resolution
- magnetic resonance
- molecular docking
- endothelial cells
- solid state
- oxidative stress
- high throughput
- molecular dynamics
- hydrogen peroxide
- big data
- electronic health record
- machine learning
- magnetic resonance imaging
- mass spectrometry
- induced pluripotent stem cells
- pluripotent stem cells
- contrast enhanced
- staphylococcus aureus
- biofilm formation
- cystic fibrosis
- deep learning