Login / Signup

Resting state hypothalamic and dorsomedial prefrontal cortical connectivity of the periaqueductal gray in cocaine addiction.

Sheng ZhangSimon ZhornitskyWuyi WangThang M LeIsha DhingraYu ChenChiang-Shan R Li
Published in: Addiction biology (2020)
Cocaine-dependent (CD) individuals demonstrate significant anxiety and dysphoria during withdrawal, a negative emotional state that may perpetuate drug seeking and consumption. An extensive body of work has focused on characterizing reward circuit dysfunction, but relatively little is known about the pain circuit during cocaine withdrawal. In an earlier study, we highlighted how cue-elicited functional connectivity between the periaqueductal gray (PAG), a subcortical hub of the pain circuit, and ventromedial prefrontal cortex supports tonic craving in recently abstinent CD. The functional organization of the brain can be characterized by intrinsic connectivities, and it is highly likely that the resting state functional connectivity (rsFC) of the PAG may also be altered in association with cocaine use variables. Here, we examined this issue in 52 CD and 52 healthy control (HC) participants. Imaging data were processed with published routines, and the findings were evaluated with a corrected threshold. In a covariance analysis, CD as compared with HC showed higher PAG rsFC with the hypothalamus, dorsomedial prefrontal, and inferior parietal cortices. Further, these connectivities were correlated negatively with tonic cocaine craving and recent cocaine use, respectively. Higher hypothalamic and frontoparietal rsFC with the PAG may reflect a compensatory process to regulate craving and compulsive drug use. The findings provide additional evidence in humans implicating the PAG circuit and may help research of the role of negative reinforcement in sustaining habitual drug use in cocaine addiction.
Keyphrases