Login / Signup

FGF21 impedes peripheral myelin development by stimulating p38 MAPK/c-Jun axis.

Yunzhong ZhangKetao JiangGuoqing XieJie DingSu PengXiaoyu LiuCheng SunXin Tang
Published in: Journal of cellular physiology (2020)
Fibroblast growth factor 21 (FGF21) as a metabolic stress hormone, is mainly secreted by the liver. In addition to its well-defined roles in energy homeostasis, FGF21 has been shown to promote remyelination after injury in the central nervous system. In the current study, we sought to examine the potential roles of FGF21 in the peripheral nervous system (PNS) myelination. In the PNS myelin development, Fgf21 expression was reversely correlated with myelin gene expression. In cultured primary Schwann cells (SCs), the application of recombinant FGF21 greatly attenuates myelination-associated gene expression, including Oct6, Krox20, Mbp, Mpz, and Pmp22. Accordingly, the injection of FGF21 into neonatal rats markedly mitigates the myelination in sciatic nerves. On the contrary, the infusion of the anti-FGF21 antibody accelerates the myelination. Mechanistically, both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were stimulated by FGF21 in SCs and sciatic nerves. Following experiments including pharmaceutical intervention and gene manipulation revealed that the p38 MAPK/c-Jun axis, rather than ERK, is targeted by FGF21 for mediating its repression on myelination in SCs. Taken together, our data provide a new aspect of FGF21 by acting as a negative regulator for the myelin development process in the PNS via activation of p38 MAPK/c-Jun.
Keyphrases