Thrombotic diseases have a high rate of mortality and disability, and pose a serious threat to global public health. Currently, most thrombolytic drugs especially protein drugs have a short blood-circulation time, resulting in low thrombolytic efficiency. Therefore, a platelet membrane (Pm) cloaked nanotube (NT-RGD/Pm) biomimetic delivery system with enhanced thrombolytic efficiency is designed. Nanotubes (NT) with an excellent clot-penetration properties are used to load a protein thrombolytic drug urokinase (Uk). Platelet-targeting arginine glycine-aspartic peptide (RGD) is grafted onto the surface of the nanotubes (NT-RGD) prior to cloaking. Multiple particle tracking (MPT) technique and confocal laser scanning microscope (CLSM) analysis are applied and the results show that the nanotubes possess a strong penetration and diffusion capacity in thrombus clots. After the Pm cloaking on NT-RGD/Uk, it shows a thrombus microenvironmental responsive release property and the half-life of Uk is six times longer than that of free Uk. Most importantly, NT-RGD-Uk/Pm exhibits a 60% thrombolytic efficiency in the FeCl 3 -induced thrombosis mouse model, and it is able to significantly reduce the bleeding side effects of Uk. This Pm-cloaked nanotube system is an effective and promising platform for the controlled and targeted delivery of drugs for the thrombus treatment.
Keyphrases
- pulmonary embolism
- particulate matter
- air pollution
- acute ischemic stroke
- public health
- polycyclic aromatic hydrocarbons
- cross sectional
- heavy metals
- mouse model
- water soluble
- cancer therapy
- multiple sclerosis
- drug induced
- high resolution
- atrial fibrillation
- amino acid
- emergency department
- mass spectrometry
- small molecule
- cardiovascular disease
- high throughput
- protein protein
- endothelial cells