Login / Signup

Stopping Autoinducer-2 Chatter by Means of an Indigenous Bacterium ( Acinetobacter sp. DKY-1): A New Antibiofouling Strategy in a Membrane Bioreactor for Wastewater Treatment.

Kibaek LeeYea-Won KimSeonki LeeSang Hyun LeeChang Hyun NahmHyeokpil KwonPyung-Kyu ParkKwang-Ho ChooIsmail KoyuncuAnja DrewsChung-Hak LeeJung-Kee Lee
Published in: Environmental science & technology (2018)
Bacterial quorum quenching (QQ) by means of degrading signaling molecules has been applied to antibiofouling strategies in a membrane bioreactor (MBR) for wastewater treatment. However, the target signaling molecules have been limited to N-acyl homoserine lactones participating in intraspecies quorum sensing. Here, an approach to disrupting autoinducer-2 (AI-2) signaling molecules participating in interspecies quorum sensing was pursued as a next-generation antibiofouling strategy in an MBR for wastewater treatment. We isolated an indigenous QQ bacterium ( Acinetobacter sp. DKY-1) that can attenuate the expression of the quorum-sensing (QS) response through the inactivation of an autoinducer-2 signaling molecule, 4,5-dihydroxy-2,3-pentanedione (DPD), among four kinds of autoinducer-2 QS bacteria. DKY-1 released AI-2 QQ compounds, which were verified to be hydrophilic with a molecular weight of <400 Da. The addition of DKY-1 entrapping beads into an MBR significantly decreased DPD concentration and remarkably reduced membrane biofouling. This new approach, combining molecular biology with wastewater engineering, could enlarge the range of QQ-MBR for antibiofouling and energy savings in the field of wastewater treatment.
Keyphrases