Login / Signup

m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis.

Shuai WangHaiyan WangZhihui XuShasha JiangYucheng ShiHairong XieShu WangJian HuaYufeng Wu
Published in: Plant physiology (2023)
N 6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotes, is an emerging player of gene regulation at transcriptional and translational levels. Here we explored the role of m6A modification in response to low temperature in Arabidopsis (Arabidopsis thaliana). Knocking down mRNA adenosine methylase A (MTA), a key component of the modification complex, by RNA interference (RNAi) led to drastically reduced growth at low temperature, indicating a critical role of m6A modification in the chilling response. Cold treatment reduced the overall m6A modification level of mRNAs especially at the 3' untranslated region. Joint analysis of the m6A methylome, transcriptome and translatome of the wild type and the MTA RNAi line revealed that m6A-containing mRNAs generally had higher abundance and translation efficiency than non-m6A-containing mRNAs under normal and low temperatures. In addition, reduction of m6A modification by MTA RNAi only moderately altered the gene expression response to low temperature but led to dysregulation of translation efficiencies of one third of the genes of the genome in response to cold. We tested the function of the m6A-modified cold-responsive gene ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) whose translation efficiency but not transcript level was reduced in the chilling-susceptible MTA RNAi plant. The dgat1 loss-of-function mutant exhibited reduced growth under cold stress. These results reveal a critical role of m6A modification in regulating growth under low temperature and suggest an involvement of translational control in chilling responses in Arabidopsis.
Keyphrases
  • gene expression
  • genome wide
  • transcription factor
  • wild type
  • single cell
  • dna methylation
  • copy number
  • binding protein
  • rna seq
  • fatty acid
  • cell wall
  • heat stress