UV-Mediated Facile Fabrication of a Robust, Fully Renewable and Controllably Biodegradable Poly(lactic acid)-Based Covalent Adaptable Network.
Xiaobo WeiXiutao ZhangTianyu ChenJing HuangTing LiXuhui ZhangShibo WangWeifu DongPublished in: ACS macro letters (2024)
A robust and fully biobased covalent adaptable network (CAN) that allows recyclability, biocompatibility, and controlled biodegradability is reported. The CAN was fabricated through a simple photo-cross-linking method, wherein low-molecular-weight poly(lactic acid) (∼3 kDa) was modified with end 1,2-dithiolane rings through a one-step Steglich esterification reaction with thioctic acid (TA). These incorporated 1,2-dithiolane rings undergo photoinduced ring-opening polymerization, thus enabling the cross-linking of poly(lactic acid) with abundant dynamic disulfide bonds. The resultant CAN demonstrates excellent transparency, effective UV-blocking capabilities below 320 nm, robust tensile strength (∼39 MPa), and superior dimensional stability at 80 °C, alongside attractive biocompatibility. Moreover, owing to the dynamic exchange and redox-responsiveness of disulfide bonds, the material can be recycled by hot-pressing and a reduction-oxidation process while also being capable of controllably biodegrading at the end of its lifecycle. Furthermore, it exhibits reconfigurable shape memory properties with fast recovery. This study elucidates a straightforward approach to fabricating multifunctional and sustainable polymer materials with potential applications in diverse fields such as packaging, coating, and biomedicine.