The MYB59 Transcription Factor Negatively Regulates Salicylic Acid- and Jasmonic Acid-Mediated Leaf Senescence.
Shuangcheng HeFang ZhiYuanchang MinRong MaAnkang GeShixiang WangJianjun WangZijin LiuYuan GuoMingxun ChenPublished in: Plant physiology (2022)
Leaf senescence is the final stage of leaf development and is affected by various exogenous and endogenous factors. Transcriptional regulation is essential for leaf senescence, however, the underlying molecular mechanisms remain largely unclear. In this study, we report that the transcription factor MYB59, which was predominantly expressed in early senescent rosette leaves, negatively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). RNA sequencing revealed a large number of differentially expressed genes involved in several senescence-related biological processes in myb59-1 rosette leaves. Chromatin immunoprecipitation and transient dual-luciferase reporter assays demonstrated that MYB59 directly repressed the expression of SENESCENCE ASSOCIATED GENE 18 and indirectly inhibited the expression of several other senescence-associated genes to delay leaf senescence. Moreover, MYB59 was induced by salicylic acid (SA) and jasmonic acid (JA). MYB59 inhibited SA production by directly repressing the expression of ISOCHORISMATE SYNTHASE 1 and PHENYLALANINE AMMONIA-LYASE 2 and restrained JA biosynthesis by directly suppressing the expression of LIPOXYGENASE 2, thus forming two negative feedback regulatory loops with SA and JA and ultimately delaying leaf senescence. These results help us understand the novel function of MYB59 and provide insights into the regulatory network controlling leaf senescence in A. thaliana.
Keyphrases