Login / Signup

Atropisomerism and Conformational Equilibria: Impact on PI3Kδ Inhibition of 2-((6-Amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one (IC87114) and Its Conformationally Restricted Analogs.

Alessio LodolaSerena BertoliniMatteo BiagettiSilvia CapacchiFabrizio FacchinettiPaola Maria GalloAlice PappaniMarco MorDaniele PalaSilvia RivaraFilippo VisentiniMauro CorsiAnna Maria Capelli
Published in: Journal of medicinal chemistry (2017)
IC87114 [compound 1, (2-((6-amino-9H-purin-9-yl)methyl)-5-methyl-3-(o-tolyl)quinazolin-4(3H)-one)] is a potent PI3K inhibitor selective for the δ isoform. As predicted by molecular modeling calculations, rotation around the bond connecting the quinazolin-4(3H)-one nucleus to the o-tolyl is sterically hampered, which leads to separable conformers with axial chirality (i.e., atropisomers). After verifying that the aS and aR isomers of compound 1 do not interconvert in solution, we investigated how biological activity is influenced by axial chirality and conformational equilibrium. The aS and aR atropisomers of 1 were equally active in the PI3Kδ assay. Conversely, the introduction of a methyl group at the methylene hinge connecting the 6-amino-9H-purin-9-yl pendant to the quinazolin-4(3H)-one nucleus of both aS and aR isomers of 1 had a critical effect on the inhibitory activity, indicating that modulation of the conformational space accessible for the two bonds departing from the central methylene considerably affects the binding of compound 1 analogues to PI3Kδ enzyme.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • molecular docking
  • single molecule
  • density functional theory
  • high throughput
  • high resolution
  • anti inflammatory
  • dna binding