Optimization of Mass Spectrometry Imaging for Drug Metabolism and Distribution Studies in the Zebrafish Larvae Model: A Case Study with the Opioid Antagonist Naloxone.
Yu Mi ParkMarkus R MeyerDaniel KrugJennifer HerrmannPublished in: International journal of molecular sciences (2023)
Zebrafish (ZF; Danio rerio ) larvae have emerged as a promising in vivo model in drug metabolism studies. Here, we set out to ready this model for integrated mass spectrometry imaging (MSI) to comprehensively study the spatial distribution of drugs and their metabolites inside ZF larvae. In our pilot study with the overall goal to improve MSI protocols for ZF larvae, we investigated the metabolism of the opioid antagonist naloxone. We confirmed that the metabolic modification of naloxone is in high accordance with metabolites detected in HepaRG cells, human biosamples, and other in vivo models. In particular, all three major human metabolites were detected at high abundance in the ZF larvae model. Next, the in vivo distribution of naloxone was investigated in three body sections of ZF larvae using LC-HRMS/MS showing that the opioid antagonist is mainly present in the head and body sections, as suspected from published human pharmacological data. Having optimized sample preparation procedures for MSI (i.e., embedding layer composition, cryosectioning, and matrix composition and spraying), we were able to record MS images of naloxone and its metabolites in ZF larvae, providing highly informative distributional images. In conclusion, we demonstrate that all major ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as part of in vivo pharmacokinetic studies, can be assessed in a simple and cost-effective ZF larvae model. Our established protocols for ZF larvae using naloxone are broadly applicable, particularly for MSI sample preparation, to various types of compounds, and they will help to predict and understand human metabolism and pharmacokinetics.
Keyphrases
- mass spectrometry
- aedes aegypti
- drosophila melanogaster
- endothelial cells
- ms ms
- high resolution
- chronic pain
- induced pluripotent stem cells
- pluripotent stem cells
- liquid chromatography
- zika virus
- pain management
- multiple sclerosis
- oxidative stress
- machine learning
- gas chromatography
- photodynamic therapy
- emergency department
- case control
- high performance liquid chromatography
- systematic review
- pulmonary embolism
- signaling pathway
- big data
- cell death
- endoplasmic reticulum stress
- cell cycle arrest
- molecular dynamics simulations
- fluorescence imaging