Characterization of sequence variation at 30 autosomal STRs in Chinese Han and Tibetan populations.
Zheng WangLe WangJing LiuJian YeYiping HouPublished in: Electrophoresis (2020)
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.