Login / Signup

Quantum reinforcement learning during human decision-making.

Ji-An LiDaoyi DongZhengde WeiYing LiuYu PanFranco NoriXiaochu Zhang
Published in: Nature human behaviour (2020)
Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforcement learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smokers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels.
Keyphrases