Exploration of Vulcanodinium rugosum Toxins and their Metabolism Products in Mussels from the Ingril Lagoon Hotspot in France.
Vincent HortIsabel Bastardo-FernándezMarina NicolasPublished in: Marine drugs (2023)
Over the year 2018, we assessed toxin contamination of shellfish collected on a monthly basis in Ingril Lagoon, France, a site known as a hotspot for Vulcanodinium rugosum growth. This short time-series study gave an overview of the presence and seasonal variability of pinnatoxins, pteriatoxins, portimines and kabirimine, all associated with V. rugosum , in shellfish. Suspect screening and targeted analysis approaches were implemented by means of liquid chromatography coupled to both low- and high-resolution mass spectrometry. We detected pinnatoxin-A and pinnatoxin-G throughout the year, with maximum levels for each one observed in June (6.7 µg/kg for pinnatoxin-A; 467.5 µg/kg for pinnatoxin-G), whereas portimine-A was detected between May and September (maximum level = 75.6 µg/kg). One of the main findings was the identification of a series of fatty acid esters of pinnatoxin-G ( n = 13) although the levels detected were low. The profile was dominated by the palmitic acid conjugation of pinnatoxin-G. The other 12 fatty acid esters had not been reported in European shellfish to date. In addition, after thorough investigations, two compounds were detected, with one being probably identified as portimine-B, and the other one putatively attributed to pteriatoxins. If available, reference materials would have ensured full identification. Monitoring of these V. rugosum emerging toxins and their biotransformation products will contribute towards filling the data gaps pointed out in risk assessments and in particular the need for more contamination data for shellfish.
Keyphrases
- high resolution mass spectrometry
- liquid chromatography
- fatty acid
- mass spectrometry
- ultra high performance liquid chromatography
- risk assessment
- tandem mass spectrometry
- electronic health record
- drinking water
- big data
- health risk
- gas chromatography
- simultaneous determination
- machine learning
- cancer therapy
- drug delivery