Activated Human Adipose Tissue Transplantation Promotes Sensorimotor Recovery after Acute Spinal Cord Contusion in Rats.
Maxime BonnetCéline ErtlenMostafa SeblaniJean-Michel BrezunThelma CoyleCristina CeredaGian Vincenzo ZuccottiMattia ColliChristophe DesouchesPatrick DecherchiStephana CarelliTanguy MarquestePublished in: Cells (2024)
Traumatic spinal cord injuries (SCIs) often result in sensory, motor, and vegetative function loss below the injury site. Although preclinical results have been promising, significant solutions for SCI patients have not been achieved through translating repair strategies to clinical trials. In this study, we investigated the effective potential of mechanically activated lipoaspirated adipose tissue when transplanted into the epicenter of a thoracic spinal contusion. Male Sprague Dawley rats were divided into three experimental groups: SHAM (uninjured and untreated), NaCl (spinal cord contusion with NaCl application), and AF (spinal cord contusion with transplanted activated human fat). Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) were measured to assess endogenous inflammation levels 14 days after injury. Sensorimotor recovery was monitored weekly for 12 weeks, and gait and electrophysiological analyses were performed at the end of this observational period. The results indicated that AF reduced endogenous inflammation post-SCI and there was a significant improvement in sensorimotor recovery. Moreover, activated adipose tissue also reinstated the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions. This investigation highlights the efficacy of activated adipose tissue grafting in acute SCI, suggesting it is a promising therapeutic approach for spinal cord repair after traumatic contusion in humans.
Keyphrases
- spinal cord
- spinal cord injury
- adipose tissue
- neuropathic pain
- insulin resistance
- clinical trial
- high fat diet
- endothelial cells
- functional connectivity
- oxidative stress
- rheumatoid arthritis
- atrial fibrillation
- ejection fraction
- end stage renal disease
- respiratory failure
- newly diagnosed
- prognostic factors
- metabolic syndrome
- stem cells
- risk assessment
- aortic dissection
- patient reported outcomes
- bone marrow
- fatty acid
- gestational age
- mass spectrometry
- high resolution
- intensive care unit
- patient reported
- single molecule
- mechanical ventilation