Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed.
Sumanta KarHaneesh JasujaDinesh R KattiKalpana S KattiPublished in: ACS biomaterials science & engineering (2019)
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.
Keyphrases
- mesenchymal stem cells
- breast cancer cells
- stem cells
- bone mineral density
- cell proliferation
- bone regeneration
- soft tissue
- umbilical cord
- bone loss
- postmenopausal women
- small cell lung cancer
- poor prognosis
- machine learning
- long non coding rna
- cell therapy
- young adults
- tissue engineering
- signaling pathway
- data analysis
- electronic health record
- pi k akt
- childhood cancer
- protein protein