Chemical Synthesis of Proteins with Base-Labile Posttranslational Modifications Enabled by a Boc-SPPS Based General Strategy Towards Peptide C-Terminal Salicylaldehyde Esters.
Wenjie MaHongxiang WuSha LiuTongyao WeiXiang David LiHan LiuXuechen LiPublished in: Angewandte Chemie (International ed. in English) (2022)
Chemical synthesis of proteins bearing base-labile post-translational modifications (PTMs) is a challenging task. For instance, O-acetylation and S-palmitoylation PTMs cannot survive Fmoc removal conditions during Fmoc-solid phase peptide synthesis (SPPS). In this work, we developed a new Boc-SPPS-based strategy for the synthesis of peptide C-terminal salicylaldehyde (SAL) esters, which are the key reaction partner in Ser/Thr ligation and Cys/Pen ligation. The strategy utilized the semicarbazone-modified aminomethyl (AM) resin, which could support the Boc-SPPS and release the peptide SAL ester upon treatment with TFA/H 2 O and pyruvic acid. The non-oxidative aldehyde regeneration was fully compatible with all the canonical amino acids. Armed with this strategy, we finished the syntheses of the O-acetylated protein histone H3(S10ac, T22ac) and the hydrophobic S-palmitoylated peptide derived from caveolin-1.