Login / Signup

Friction Stir Welding of AA5754-H24: Impact of Tool Pin Eccentricity and Welding Speed on Grain Structure, Crystallographic Texture, and Mechanical Properties.

Mohamed M Z AhmedAhmed R S EssaSabbah AtayaMohamed M El-Sayed SelemanAli Abd El-AtyBandar AlzahraniKamel TouilebAshraf BakkarJoffin J PonnoreAbdelkarim Yousif Mohamed
Published in: Materials (Basel, Switzerland) (2023)
This study investigates the effect of tool pin eccentricity and welding speed on the grain structure, crystallographic texture, and mechanical properties of friction stir welded (FSWed) AA5754-H24. Three tool pin eccentricities of 0, 0.2, and 0.8 mm at different welding speeds ranging from 100 mm/min to 500 mm/min and a constant tool rotation rate of 600 rpm were investigated. High-resolution electron backscattering diffraction (EBSD) data were acquired from each weld's center of the nugget zone (NG) and processed to analyze the grain structure and texture. In terms of mechanical properties, both hardness and tensile properties were investigated. The grain structure in the NG of the joints produced at 100 mm/min, 600 rpm, and different tool pin eccentricities showed significant grain refining due to dynamic recrystallization with average grain sizes of 18, 15, and 18 µm at 0, 0.2, and 0.8 mm pin eccentricities, respectively. Increasing the welding speed from 100 to 500 mm/min further reduced the average grain size of the NG zone to 12.4, 10, and 11 µm at 0, 0.2, and 0.8 mm eccentricity, respectively. The simple shear texture dominates the crystallographic texture with both B¯/B texture component with the C component at their ideal positions after rotating the data to align the shear reference frame with the FSW reference frame in both the PFs and ODF sections. The tensile properties of the welded joints were slightly lower than the base material due to the hardness reduction in the weld zone. However, the ultimate tensile strength and the yield stress for all welded joints increased by increasing the friction stir welding (FSW) speed from 100 to 500 mm/min. Welding using the pin eccentricity of 0.2 mm resulted in the highest tensile strength; at a welding speed of 500 mm/min, it reached 97% of the base material strength. The hardness profile showed the typical W shape with a reduction in the hardness of the weld zone and a slight recovery of the hardness in the NG zone.
Keyphrases
  • high resolution
  • contrast enhanced
  • magnetic resonance imaging
  • machine learning
  • mass spectrometry
  • magnetic resonance
  • computed tomography
  • electronic health record
  • big data
  • crystal structure